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1 Complexity of Hilbert bases, TDL-ness and g-polymatroids
In Chapter 2 of the thesis we address the complexity of several properties of polyhedra,
linear systems or sets of vectors, and show some related results as by-products.

1.1 Testing Hilbert bases is hard

A finite set of integer vectors is called a Hilbert basis if every integer vector in their cone
can be written as a nonnegative integral combination of them. In 1990, Papadimitriou and
Yannakakis [15] raised the questions what the complexity of the recognition problems of
TDI systems and Hilbert bases is. Both were open for a long time. Recently Ding, Feng and
Zang [11] proved that the problem “Is Ax ≥ 1, x ≥ 0 TDI?” is co-NP-complete, even if A is
the incidence matrix of a graph. We answer the other question, strengthening this result.

Theorem 1.1 ([7]). The problem of deciding whether or not a set of integer vectors forms a Hilbert
basis is co-NP-complete even if the set consists of 0–1 vectors having at most three ones.

1.2 Total dual laminarity and generalized polymatroids

Consider a packing-covering polyhedron

Q(p, b) := {x ∈ Rn : p(S) ≤ x(S) ≤ b(S) ∀S ⊆ [n]} (1)

for set functions p : 2[n] → R ∪ {−∞} and b : 2[n] → R ∪ {+∞}. Note that infinities mean
absent constraints. The pair (p, b) is paramodular if p is supermodular, b is submodular,
p(∅) = b(∅) = 0, and the “cross-inequality” b(S)− p(T) ≥ b(S \ T)− p(T \ S) holds for all
S, T ⊆ [n]. A generalized polymatroid is any polyhedron Q(p, b) where (p, b) is paramodular;
and also the empty set is considered to be a g-polymatroid.

The dual variables correspond to sets with finite p- or b-value. The support of a dual so-
lution is the set system consisting of all sets for which at least one dual variable is nonzero.
A dual solution is laminar if its support is a laminar set system (that is, each two members
are disjoint or one contains the other).

Definition 1.2. The pair (p, b) is totally dual laminar (TDL) if for every primal objective with
finite optimal value, some optimal dual solution is laminar.

Theorem 1.3 ([1]). Deciding whether a given system is TDL is NP-hard.

Theorem 1.4 ([1]). If P is a polyhedron whose intersection with each integral g-polymatroid is
integral, then P is an integral g-polymatroid.

1.3 Recognizing Generalized Polymatroids

Theorem 1.5 ([1]). There is a polynomial-time algorithm that, on input (A, b), determines whether
the polyhedron {x : Ax ≤ b} is a g-polymatroid.

Corollary 1.6. Let P = {x : Ax ≤ b} ∩ {x : x([n]) = c}. Then we can test in polynomial time
whether P is a base polyhedron.
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The full-dimensional case of Theorem 1.5 can be accomplished using the following new
characterization. It is enough to consider systems of the form (1). Let B be the family of all
S where x(S) ≤ b(S) is part of the input (that is, b(S) 6= +∞). Similarly let P be the family
of all S where x(S) ≥ p(S) is part of the input.

Theorem 1.7 ([1]). Suppose that for (p, b), the polyhedron Q(p, b) is full-dimensional and let
i(S) := minx∈P x(S) and a(S) := maxx∈P x(S). Then Q(p, b) is a g-polymatroid if and only if

(i) for every S, T ∈ B, a(S ∪ T) + a(S ∩ T) ≤ b(S) + b(T) holds,
(ii) for every S, T ∈ P , i(S ∪ T) + i(S ∩ T) ≥ p(S) + p(T) holds, and

(iii) for every S ∈ B and T ∈ P , a(S \ T)− i(T \ S) ≤ b(S)− p(T) holds.

Corollary 1.8. If Q(p, b) is a full-dimensional g-polymatroid, then (p, b) is TDL.

We can also decide whether a given linear system of the form (1) describes an integer
g-polymatroid.

Theorem 1.9 ([1]). Suppose that Q(p, b) is a g-polymatroid, and that it is minimally described.
Then Q(p, b) is an integer g-polymatroid if and only if p and b are integral and for every set on
which the sum is constant in Q(p, b), the sum is integer.

2 Polyhedral Sperner’s Lemma and applications
We begin Chapter 3 of the thesis with stating polyhedral variants of the multidimensional
Sperner Lemma. For a colouring of the vertices of a polytope P, a facet of P is multicoloured
if it contains vertices of every colour. For a colouring of the facets of P, a vertex of P
is multicoloured if it lies on facets of every colour. A simple vertex of an n-dimensional
polyhedron is a vertex that lies on exactly n facets.

Theorem 2.1. Let P be an n-dimensional polytope, with a simplex facet F0. Suppose we have a
colouring of the vertices of P with n colours such that F0 is multicoloured. Then there is another
multicoloured facet.

Theorem 2.2. Let P be an n-dimensional pointed polyhedron whose characteristic cone is generated
by n linearly independent vectors. If the facets of the polyhedron are coloured with n colours such
that facets containing the i-th extreme direction do not get colour i, then there is a multicoloured
vertex.

2.1 Using the polyhedral Sperner Lemma

By applying Theorem 2.2 we get short proofs of several purely combinatorial and some
game-theoretical results. Most of these results are known, but some of them and the
method are new and joint work with Király [2, 3].

Kernels in directed graphs
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Definition 2.3. In a directed graph D = (V, A), a stable set S ⊆ V is said to be a kernel if
from every node of V \ S there is an arc to S. Let G = (V, E) be an undirected graph. A
superorientation of G is a directed graph ~G obtained by replacing each edge uv of G by an arc
uv or an arc vu or both. A one-way cycle in a superorientation is a directed cycle consisting
of arcs that are not present reversed in the digraph. We define a source node of an induced
subdigraph ~G[U] as a node in U from which there are arcs to all of its neighbours in G[U].
A superorientation is clique-acyclic if no clique contains a one-way cycle (equivalently, if
every clique contains a source node). A graph G is kernel solvable if every clique-acyclic
superorientation of G has a kernel.

Berge and Duchet [9] conjectured that a graph is kernel solvable if and only if it is
perfect. The kernel-solvability of perfect graphs was proved by Boros and Gurvich [10],
who used elaborate game-theoretic machinery. We give a short proof that relies on Theorem
2.2.

Theorem 2.4 (Boros, Gurvich [10]). Every perfect graph is kernel solvable.

We extend Theorem 2.4 to arbitrary undirected graphs, provided some conditions hold
that depend on the facets of STAB(G). Let ~G be a superorientation of a graph G = (V, E),
and let U be a set of vertices. We say that ~G is one-way-cycle-free (or owc-free) in U if there is
no one-way cycle in ~G[U].

Theorem 2.5 ([2]). If STAB(G) = {x ∈ Rn
+ : Ax ≤ b} for nonnegative A and b, and ~G is a

superorientation of G which is owc-free in supp(a) for every row a of A, then there is a kernel in ~G.

A graph is called h-perfect if its stable set polytope is described by the following set of
inequalities:

xv ≥ 0 for every v ∈ V,

x(C) ≤ 1 for every maximal clique C,

x(Z) ≤ |Z| − 1
2

for every odd hole Z.

To apply Theorem 2.5 to h-perfect graphs, let us call a superorientation of a graph
odd-hole-acyclic if no oriented odd hole is a one-way cycle.

Theorem 2.6 ([2]). If ~G is a superorientation of an h-perfect graph and is clique-acyclic and odd-
hole-acyclic, then it has a kernel.

A digraph is kernel-perfect if all of its induced subdigraphs have kernels.

Corollary 2.7. It is in co-NP to decide whether a given superorientation of an h-perfect graph is
kernel-perfect.

Scarf’s Lemma
Scarf [16] proved that a balanced n-person game with non-transferable utilities (NTU) al-
ways has a non-empty core. His proof relies on a lemma in which we consider a bounded
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polyhedron P = {x ∈ Rn : Ax ≤ b, x ≥ 0} where A is an m× n nonnegative matrix (with
non-zero columns) and b ∈ Rm is a positive vector. In addition, for every row i ∈ [m] of
A, a total order <i of the columns (or a subset of them) is given. We denote the domain
of <i by Dom(<i). If j ∈ Dom(<i) and K ⊆ Dom(<i), we use the notation j ≤i K as an
abbreviation for “j ≤i k for every k ∈ K”.

Definition 2.8. A vertex x∗ of P dominates column j if there is a row i where aix∗ = bi and
j ≤i supp(x∗) ∩Dom(<i) (this implies that j ∈ Dom(<i)). A vertex x∗ of P is maximal if by
increasing any coordinate of x∗ we leave P (or formally, ({x∗}+ Rn

+) ∩ P = {x∗}).

Theorem 2.9 (Scarf’s Lemma [16]). Let P be as above and let <i be a total order on supp(ai)

(i ∈ [m]), where ai is the i-th row of A. Then P has a maximal vertex that dominates every column.

We show that essentially, Scarf’s Lemma for a polyhedron P corresponds to the poly-
hedral Sperner’s Lemma 2.2 for the polyhedron P−Rn

+. This gives a new proof of Scarf’s
Lemma.

Fractional core of NTU games
In a finitely generated non-transferable utility (NTU) game there are m players, and a finite
multiset of basic coalitions Sj ⊆ [m] (j ∈ [n]). Each player i has a total order <i of the basic
coalitions that he participates in; Sj <i Sk means that the player i prefers coalition Sk to
coalition Sj.

A set S of basic coalitions is said to be in the core of the game if they are disjoint and
for each basic coalition S′ not in S there is a player i ∈ S′ and a basic coalition S ∈ S such
that S′ <i S.

A vector x ∈ Rn
+ is in the fractional core if for each player i, ∑j:i∈Sj

x(j) ≤ 1, and for each
j ∈ [n] there is a player i in Sj such that ∑k:i∈Sk

x(k) = 1 and Sj 6i Sk whenever i ∈ Sk and
x(k) > 0. A vector x ∈ Rn

+ is admissible if ∑j:i∈Sj
x(j) ≤ 1 for every player i. Using Theorem

2.2 we give a short proof of the following version of Scarf’s Theorem.

Theorem 2.10 (Scarf [16]). The fractional core of a finitely generated NTU-game is always non-
empty. If the polyhedron of admissible vectors is integer, then the core is also non-empty.

A matroidal generalization of kernels
Fleiner [12] defined a notion of matroid-kernels. An ordered matroid M = {S, I ,<} is a
matroid on ground set S with independent sets I together with a linear order < of its
ground set. In an ordered matroid, a set X ⊆ S is said to dominate an element e if either
e ∈ X or there is an independent set Y ⊆ X for which Y ∪ {e} /∈ I (that is, Y spans e) and
e < y for each y ∈ Y.

Matroid-kernels concern two ordered matroids on the same ground set – let M1 =

{S, I1,<1} and M2 = {S, I2,<2} be ordered matroids. A set K ⊂ S is called an M1M2-
kernel if it is a common independent set of the two matroids (that is, K ∈ I1 ∩ I2) and every
element e ∈ S is dominated by K in (at least) one of the two matroids.

4



Theorem 2.11 (Fleiner [12]). For every two ordered matroids M1 and M2, there exists an
M1M2-kernel.

We give a short proof using Theorem 2.2 on the downhull of the matroid intersection
polytope.

Orientation of clutters
Ideal clutters are Sperner systems of which the covering polyhedron is integral. Using our
method we get the following new result for clutters.

Theorem 2.12. Let A be an ideal clutter on ground set [n] and let B be its blocker. Then there are
no functions p : A → S and q : B → S such that p(A) ∈ A ∀A ∈ A, q(B) ∈ B ∀B ∈ B and if
p(A) = q(B) for some A ∈ A and B ∈ B, then |A ∩ B| > 1.

Stable flows
In an instance of the stable flow problem we have a network on digraph D = (V, A) with
s, t ∈ V and capacities c ∈ RA

+, and additionally linear orders ≤v for each node v on the
arc set incident to v. The network along with the set of these preference orders is called a
network with preferences.

Let f be a flow of network (D, s, t, c). A rooted cycle is a directed cycle in which one node
is designated as the root. It can be regarded as a path which ends at its starting node. A
path or rooted cycle P = (v1, a1, v2, a2, . . . , ak−1, vk) is said to block f if the following hold:

(i) vi 6= s, t if i ∈ {2, 3, . . . , k− 1},
(ii) each arc ai is unsaturated in f ,

(iii) v1 = s or v1 = t or there is an arc a′ = v1u for which f (a′) > 0 and a′ <v1 a1,
(iv) vk = s or vk = t or there is an arc a′′ = wvk for which f (a′′) > 0 and a′′ <v1 ak−1.

A flow is called stable if there is no path or cycle blocking it. We give a new proof of
Fleiner’s following result, using Theorem 2.2 on a polyhedron of exponential dimension.

Theorem 2.13 (Fleiner [13]). In every network with preferences there exists a stable flow. If the
capacity function is integral, then there is an integral stable flow.

2.2 Attempts at converse statements

The Strong Perfect Graph Theorem implies the converse of the theorem of Boros and Gur-
vich 2.4. So the question arises, whether the converse of the other applications of Theorem
2.2 is also true, or even the converse of the theorem itself. We show that the converse of
Theorem 2.6 does not hold.

Proposition 2.14 ([3]). There exists a graph which is not h-perfect, but every clique- and odd-hole-
acyclic superorientation of it has a kernel.

It would be tempting to formulate a more general conjecture, which is a kind of converse
to the polyhedral Sperner’s Lemma. We give a counterexapmle.
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Proposition 2.15 ([3]). There exists a 4-dimensional polytope P, and two distinct vertices x1 and
x2 of P, where x1 is simple, such that the facets of P can not be coloured by 4 colours so that x1 and
x2 are precisely the vertices that are incident to facets of all colours.

Using this, a counterexample can be given to a converse of Scarf’s Lemma.

Proposition 2.16 ([3]). There is a nonnegative m× n matrix A, a positive vector b ∈ Rm for which
the polyhedron P = {x : Ax ≤ b, x ≥ 0} is bounded, and a maximal vertex x∗ of P, such that no
matter how we give a total order on supp(ai) for each row ai of A, there is a maximal vertex different
from x∗ which dominates every column.

Theorem 2.17. The converse of Theorem 2.12 holds if A has an mni minor whose core is cyclic.

2.3 PPAD-completeness

The following are the computational versions of Theorem 2.1 and Theorem 2.2.

Polytopal Sperner:

Input: vectors vi ∈ Qn (i = 1, . . . , m) whose convex hull is a full-dimensional polytope P; a
colouring of the vertices by n colours; a multicoloured simplex facet F0 of P.

Output: n affine independent vectors vi1 , . . . , vin with different colours which lie on a facet
of P different from F0.

Extreme direction Sperner:

Input: matrix A ∈ Qm×n and vector b ∈ Qm such that P = {x : Ax ≤ b} is a pointed
polyhedron whose characteristic cone is generated by n linearly independent vectors;
a colouring of the facets by n colours such that facets containing the i-th extreme
direction do not get colour i.

Output: a multicoloured vertex of P.

Theorem 2.18 ([5]). Both extreme direction Sperner and Polytopal Sperner are PPAD-
complete.

3 Ideal set functions
In Chapter 4 we extend of the notions of the blocking relation and idealness of clutters to
set functions and prove that several properties are maintained. We also show new types of
minimally non-ideal structures. This is joint work with Tamás Király [4].

3.1 Gradual set functions

Let V be a finite ground set, and let f : 2V → Z be an integer-valued set function that
satisfies f (X) ≤ f (X + v) ≤ f (X) + 1 for every X ( V and v ∈ V \ X. We call such a set
function gradual. Let the blocker b( f ) : 2V → Z of f be the (gradual) set function defined by
b( f )(X) := − f (V \ X) for any set X ⊆ V. Obviously, b(b( f )) = f .

We define the following two minor operations on gradual functions, resulting in gradual
functions on ground set V − v for a node v ∈ V:
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deletion: f \v(X) := f (X) for every X ⊆ V − v,
contraction: f /v(X) := f (X + v) for every X ⊆ V − v.

A function f ′ is a minor of f if it can be obtained from f using deletions and contractions.

Proposition 3.1. If f is gradual, then its minors are also gradual.

Proposition 3.2. For any gradual function f , b( f \v) = b( f )/v and b( f /v) = b( f )\v.

3.2 Polyhedra of gradual functions

We assign the following (n + 1)-dimensional polyhedra to a gradual set function f :

P( f ) := {(y, β) ∈ Rn+1 : 0 ≤ y ≤ 1, y(X)− β ≥ f (X) for every X ⊆ V},
Q( f ) := {(y, β) ∈ Rn+1 : y ≥ 0, y(X)− β ≥ f (X) for every X ⊆ V},
R( f ) := {(y, β) ∈ Rn+1 : y(X)− β ≥ f (X) for every X ⊆ V}.

Proposition 3.3. If f is a gradual set function, then Q( f ) = P( f ) + Rn
+.

Proposition 3.4. For a gradual function f , vert(P( f )) ⊇ vert(Q( f )) ⊇ vert(R( f )).

Proposition 3.5. For any gradual function f , the following hold:

P( f \v) = {(y, β) ∈ Rn−1+1 : (y, 1, β) ∈ P( f )}, and

P( f /v) = {(y, β) ∈ Rn−1+1 : (y, 0, β) ∈ P( f )},

that is, both P( f \v) and P( f /v) are facets of P( f ).

3.3 Ideal gradual set functions

Definition 3.6. The gradual set function f is called ideal if the polyhedron P( f ) is integral.

For a gradual set function f , let us define the following finite set of vectors in Rn+1:
S( f ) := {(χX, f (X)) : X ⊆ V}. We denote the set S( f )− cone{(0,−1)} by S↓( f ). We note
that the idealness of f is equivalent to P( f ) = conv{S↓(b( f ))}.

Theorem 3.7. For a gradual set function, the following are equivalent:

(i) f is ideal, that is, P( f ) = conv{S↓(b( f ))}
(ii) b( f ) is ideal, that is, P(b( f )) = conv{S↓( f )}

(iii) R( f ) is an integer polyhedron,
(iv) Q( f ) is an integer polyhedron

Proposition 3.8. If f is ideal, then any minor of it is also ideal.

Definition 3.9. A gradual set function is called minimally nonideal (mni) if it is not ideal but
every minor of it is ideal.
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3.4 Twisting

Definition 3.10. Let f be a gradual set function on ground set V, and let U be a subset of
V. The twisting of f at U is the set function f U on ground set V defined by

f U(X) := f (X∆U) + |X ∩U|.

Proposition 3.11. Every twisting of a gradual set function is a gradual set function.

Proposition 3.12. For a set U ⊆ V and an element v ∈ V the following hold.

( f \v)U−v ∼=

 f U/v if v ∈ U,

f U\v if v /∈ U,
( f /v)U−v ∼=

 f U\v if v ∈ U,

f U/v if v /∈ U.

Proposition 3.13. Every twisting of an ideal or mni set function is also ideal or mni, respectively.

3.5 Examples

Clutters
Let C be a clutter on ground set V. Let C↑ denote the uphull of C, that is, {X ⊆ V : ∃C ∈
C : C ⊆ X}. We associate the gradual set function fC to C which is 1 on the sets in C↑

and 0 otherwise. It is easy to check that this works well with the minor operations: for any
v ∈ V, fC\v = fC\v and fC/v = fC/v. Likewise, one can check that the blocker b( fC) is a
translation of the set function corresponding to the blocker of C, namely fb(C).

Proposition 3.14. A clutter C is ideal / mni if and only if fC is ideal / mni.

Matroid rank functions

Proposition 3.15. Both the rank function and the corank function of a matroid are ideal.

Nearly bipartite graphs
For a graph G = (V, E) let fG be the gradual set function on V which is 0 on the emptyset,
1 on the stable sets of G and 2 otherwise. The graph G is called nearly bipartite if for every
node v, the graph G[V − N(v)] is bipartite, where N(v) is the closed neighbourhood of v.

Proposition 3.16. Let f be a gradual function with values in {0, 1, 2} such that f (∅) = 0 and
f (v) = 1 (∀v ∈ V). Then f is ideal if and only if f = fG for a nearly bipartite graph G.

A class of mni gradual set functions

Proposition 3.17. The following gradual functions are mni, if n ≥ 3:

θn(X) :=


0 if X = ∅,

2 if X = V,

1 otherwise.

θn(X) :=


0 if X = ∅,

n− 2 if X = V,

|X| − 1 otherwise.

An mni set function with non-simple fractional vertex
If an mni set function fC is defined by an mni clutter C, then Q( fC) has a unique fractional
vertex and it is simple. This does not hold however for arbitrary mni set functions; in the
thesis we give an example f on a 5-element ground set for which the unique fractional
vertex of Q( f ) is not simple.
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3.6 Convex and concave gradual extensions

Let g be a function on a box B in Rn. We call g gradual if for every x, z ∈ B for which
x ≤ z, g(x) ≤ g(z) ≤ g(x) + ‖z− x‖1 holds. We consider gradual extensions of a gradual
set function f to the unit cube {x ∈ Rn : 0 ≤ x ≤ 1}.

Proposition 3.18. The maximal convex extension of a gradual set function f to the unit cube
{x ∈ Rn : 0 ≤ x ≤ 1} is

f̂ (z) := min{ ∑
Y⊆V

λY f (Y) : λY ≥ 0 ∀Y ⊆ V, ∑
Y⊆V

λY = 1, ∑
Y⊆V

λYχY = z},

which is moreover gradual. The minimal convex gradual extension of f to the unit cube is

f̃ (z) := max{ f (Y) + z(Y)− |Y| : Y ⊆ V}.

Theorem 3.19. For a gradual set function f , the following are equivalent.

(i) f is ideal,
(ii) f has a unique convex gradual extension to the unit cube,

(iii) f has a unique concave gradual extension to the unit cube,
(iv) there exist set functions u and l for which

conv(S( f )) = {(x, α) ∈ Rn+1 : 0 ≤ x ≤ 1,

x(Y)− α ≤ u(Y) ∀Y ⊆ V,

x(Y)− α ≥ l(Y) ∀Y ⊆ V },

(v) conv(S( f )) = {(x, α) ∈ Rn+1 : 0 ≤ x ≤ 1,

x(Y)− α ≤ |Y| − f (Y) ∀Y ⊆ V,

x(Y)− α ≥ b( f )(Y) ∀Y ⊆ V }.
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